When Lara Hawthorne, an illustrator in Bristol, UK, began developing strange symptoms after having COVID-19, she hoped that they weren’t due to the virus. Her initial illness had been mild. “I’ve been triple vaccinated. I felt quite protected,” she says. But months later, she was still sick with a variety of often debilitating symptoms: earaches, tinnitus, congestion, headaches, vertigo, heart palpitations, muscle pain and more. On some days, Hawthorne felt so weak that she could not get out of bed. When she finally saw her physician, the diagnosis was what she had been dreading: long COVID.
Unable to find relief, she became increasingly desperate. After reading an opinion piece in The Guardian newspaper about how blood clots might be to blame for long COVID symptoms, Hawthorne contacted a physician in Germany who is treating people with blood thinners and a procedure to filter the blood. She hasn’t heard back yet — rumour has it that people stay on the waiting list for months — but if she has the opportunity to head there for these unproven treatments, she probably will. “I don’t want to wait on my health when I’m feeling so dreadful,” she says.
Researchers are baffled by long COVID: hundreds of studies have tried to unpick its mechanism, without much success. Now some scientists, and an increasing number of people with the condition, have been lining up behind the as-yet-unproven hypothesis that tiny, persistent clots might be constricting blood flow to vital organs, resulting in the bizarre constellation of symptoms that people experience.
Proponents of the idea (#teamclots, as they sometimes refer to themselves on Twitter) include Etheresia Pretorius, a physiologist at Stellenbosch University in South Africa, and Douglas Kell, a systems biologist at the University of Liverpool, UK, who led the first team to visualize micro-clots in the blood of people with long COVID. They say that the evidence implicating micro-clots is undeniable, and they want trials of the kinds of anticoagulant treatment that Hawthorne is considering. Pretorius penned the Guardian article that caught Hawthorne’s attention.
But many haematologists and COVID-19 researchers worry that enthusiasm for the clot hypothesis has outpaced the data. They want to see larger studies and stronger causal evidence. And they are concerned about people seeking out unproven, potentially risky treatments.
When it comes to long COVID, “we’ve now got little scattered of bits of evidence”, says Danny Altmann, an immunologist at Imperial College London. “We’re all scuttling to try and put it together in some kind of consensus. We’re so far away from that. It’s very unsatisfying.”
Cascade of clots
Pretorius and Kell met about a decade ago. Pretorius had been studying the role of iron in clotting and neglected to cite some of Kell’s research. When he reached out, they began chatting. “We had a Skype meeting and then we decided to work together,” Pretorius says. They observed odd, dense clots that resist breaking down for years in people with a variety of diseases. The research led them to develop the theory that some molecules — including iron, proteins or bits of bacterial cell wall — might trigger these abnormal clots.
Blood clotting is a complex process, but one of the key players is a cigar-shaped, soluble protein called fibrinogen, which flows freely in the bloodstream. When an injury occurs, cells release the enzyme thrombin, which cuts fibrinogen into an insoluble protein called fibrin. Strands of fibrin loop and criss-cross, creating a web that helps to form a clot and stop the bleeding.
Under a microscope, this web typically resembles “a nice plate of spaghetti”, Kell says. But the clots that the team has identified in many inflammatory conditions look different. They’re “horrible, gunky, dark”, Kell says, “such as you might get if you half-boiled the spaghetti and let it all stick together.” Research by Kell, Pretorius and their colleagues suggests that the fibrin has misfolded1, creating a gluey, ‘amyloid’ version of itself. It doesn’t take much misfolding to seed disaster, says Kell. “If the first one changes its conformation, all the others have to follow suit”, much like prions, the infectious misfolded proteins that cause conditions such as Creutzfeldt–Jakob disease.
Pretorius first saw these strange, densely matted clots in the blood of people with a clotting disorder2, but she and Kell have since observed the phenomenon in a range of conditions1 — diabetes, Alzheimer’s disease and Parkinson’s disease, to name a few. But the idea never gained much traction, until now.
When the pandemic hit in 2020, Kell and Pretorius applied their methods almost immediately to people who had been infected with SARS-CoV-2. “We thought to look at clotting in COVID, because that is what we do,” Pretorius says. Their assay uses a special dye that fluoresces when it binds to amyloid proteins, including misfolded fibrin. Researchers can then visualize the glow under a microscope. The team compared plasma samples from 13 healthy volunteers, 15 people with COVID-19, 10 people with diabetes and 11 people with long COVID3. For both long COVID and acute COVID-19, Pretorius says, the clotting “was much more than we have previously found in diabetes or any other inflammatory disease”. In another study4, they looked at the blood of 80 people with long COVID and found micro-clots in all of the samples.
So far, Pretorius, Kell and their colleagues are the only group that has published results on micro-clots in people with long COVID.
But in unpublished work, Caroline Dalton, a neuroscientist at Sheffield Hallam University’s Biomolecular Sciences Research Centre, UK, has replicated the results. She and her colleagues used a slightly different method, involving an automated microscopy imaging scanner, to count the number of clots in blood. The team compared 3 groups of about 25 individuals: people who had never knowingly had COVID-19, those who had had COVID-19 and recovered, and people with long COVID. All three groups had micro-clots, but those who had never had COVID-19 tended to have fewer, smaller clots, and people with long COVID had a greater number of larger clots. The previously infected group fell in the middle. The team’s hypothesis is that SARS-CoV-2 infection creates a burst of micro-clots that go away over time. In individuals with long COVID, however, they seem to persist.
Dalton has also found that fatigue scores seem to correlate with micro-clot counts, at least in a few people. That, says Dalton, “increases confidence that we are measuring something that is mechanistically linked to the condition”.
In many ways, long COVID resembles another disease that has defied explanation: chronic fatigue syndrome, also known as myalgic encephalomyelitis (ME/CFS). Maureen Hanson, who directs the US National Institutes of Health (NIH) ME/CFS Collaborative Research Center at Cornell University in Ithaca, New York, says that Pretorius and Kell’s research has renewed interest in a 1980s-era hypothesis about abnormal clots contributing to symptoms. Pretorius, Kell and colleagues found amyloid clots in the blood of people with ME/CFS, but the amount was much lower than what they’ve found in people with long COVID5. So clotting is probably only a partial explanation for ME/CFS, Pretorius says.
Micro-clot mysteries
Where these micro-clots come from isn’t entirely clear. But Pretorius and Kell think that the spike protein, which SARS-CoV-2 uses to enter cells, might be the trigger in people with long COVID. When they added the spike protein to plasma from healthy volunteers in the laboratory, that alone was enough to prompt formation of these abnormal clots6.
Bits of evidence hint that the protein might be involved. In a preprint7 posted in June, researchers from Harvard University in Boston, Massachusetts, reported finding the spike protein in the blood of people with long COVID. Another paper8 from a Swedish group showed that certain peptides in the spike can form amyloid strands on their own, at least in a test tube. It’s possible that these misfolded strands provide a kind of template, says Sofie Nyström, a protein chemist at Linköping University in Sweden and an author of the paper.